The afterglow from the distant neutron-star merger detected last August has continued to brighten - much to the surprise of astrophysicists studying the aftermath of the massive collision that took place about 138 million light years away and sent gravitational waves rippling through the universe.
New observations from NASA's orbiting Chandra X-ray Observatory, reported in Astrophysical Journal Letters, indicate that the gamma ray burst unleashed by the collision is more complex than scientists initially imagined.
"Usually when we see a short gamma-ray burst, the jet emission generated gets bright for a short time as it smashes into the surrounding medium - then fades as the system stops injecting energy into the outflow," says McGill University astrophysicist Daryl Haggard, whose research group led the new study. "This one is different; it's definitely not a simple, plain-Jane narrow jet."
Source
New observations from NASA's orbiting Chandra X-ray Observatory, reported in Astrophysical Journal Letters, indicate that the gamma ray burst unleashed by the collision is more complex than scientists initially imagined.
"Usually when we see a short gamma-ray burst, the jet emission generated gets bright for a short time as it smashes into the surrounding medium - then fades as the system stops injecting energy into the outflow," says McGill University astrophysicist Daryl Haggard, whose research group led the new study. "This one is different; it's definitely not a simple, plain-Jane narrow jet."
Source