We know that the birthplaces of stars are large molecular clouds of gas and dust found in space.
But what exactly determines the number and kind of stars and planets that are formed in these clouds? How was our Solar system nursed and how did it emerge from such a cloud billions of year ago?
These are mysteries that have been puzzling astronomers for decades, but research published today in Science adds an extra dimension to our understanding.
Knowledge of the 3-dimensional structure of these clouds would be an important leap in our understanding of how stars and planets are born.
The physics responsible for the formation of stars is also responsible for shaping the clouds. But even with the most advanced telescopes in the world we can only see the two-dimensional projections of clouds on the plane of the sky.
Thankfully, there is a way around this problem. A recently discovered type of structure in molecular clouds, called striations, was found to form because of waves.
Continued...
Source
But what exactly determines the number and kind of stars and planets that are formed in these clouds? How was our Solar system nursed and how did it emerge from such a cloud billions of year ago?
These are mysteries that have been puzzling astronomers for decades, but research published today in Science adds an extra dimension to our understanding.
Knowledge of the 3-dimensional structure of these clouds would be an important leap in our understanding of how stars and planets are born.
The physics responsible for the formation of stars is also responsible for shaping the clouds. But even with the most advanced telescopes in the world we can only see the two-dimensional projections of clouds on the plane of the sky.
Thankfully, there is a way around this problem. A recently discovered type of structure in molecular clouds, called striations, was found to form because of waves.
Continued...
Source