The climate on early Mars has presented an enigma for planetary scientists because surface features such as valley networks indicate abundant liquid water was present and the clay minerals found in most ancient surface rocks need even warmer temperatures to form, while atmospheric models generally support a cold climate on early Mars. This new study led by Janice Bishop of the SETI Institute and NASA's Ames Research Center in Silicon Valley has addressed this question by investigating the conditions needed for the formation of the ancient surface clays.
Part of this early Martian climate puzzle comes down to how "warm" is warm. Currently Mars' temperature is below freezing, but we know it must once have been warm enough for liquid water to carve out features on the surface. However, cold water is not warm enough for surface clays to form. "We realized that in order to better constrain the early Martian climate, we needed to understand the formation conditions of Martian clays," said Bishop.
Source
Part of this early Martian climate puzzle comes down to how "warm" is warm. Currently Mars' temperature is below freezing, but we know it must once have been warm enough for liquid water to carve out features on the surface. However, cold water is not warm enough for surface clays to form. "We realized that in order to better constrain the early Martian climate, we needed to understand the formation conditions of Martian clays," said Bishop.
Source